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Abstract In this paper, we consider simulation and visualization of spherical dis-
tributions as well as plotting of densities and histograms on the sphere, in support
of the dictum, “A picture is worth a thousand words.” This is in many ways a com-
panion paper to the recently published theoretical article by the authors on spherical
harmonics (Jammalamadaka and Terdik in J Multivariate Anal 171:436–451, 2019
[1]). We provide computational algorithms to simulate several of the spherical mod-
els discussed there and provide alternate and improved methods in some cases. This
allows a user to choose between alternate approaches for generating such random
variates, and in depicting them via plots and histograms. The algorithms are made
available in a MATLAB package titled “3D-Directional Statistics, Simulation, and
Visualization” abbreviated 3D-Directional-SSV which is available at MATLAB,
File Exchange, and also posted on GitHub. This work is especially appropriate in
this volume celebrating Florence Nightingale, the progenitor of what we now call
the rose diagram in two dimensions.

1 Introduction

Vector space representation provides a very efficient method for displaying and ana-
lyzing spherical data, both in the natural world and for the theoretical framework.
Further practical exploration and analysis in this area depend on related software and
associated algorithms. We consider spherical distributions on the surface of the unit
sphere S2 embedded in R

3, facilitating the validation and testing of the theory pre-
sented in Rao andGy [1] and related papers.We develop the necessary computational
tools to achieve this goal and produce what we believe will be a valuable resource
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for scientists interested in statistical analysis of directional data in 3 dimensions.
These tools are provided in the form of a MATLAB package titled “3D-Directional
Statistics, Simulation, and Visualization” abbreviated 3D-Directional-SSV.

We start with a summary of what we call the Generalized Fisher–Bingham (GFB)
family of distributions and point out the structure and relationship between various
subfamilies therein. We review and reconsider earlier work by Wood [2], Kent [3],
and a more recent R-package by Kent et al. [4] for the simulation of selected distribu-
tions belonging to thisGFB family. OurMATLABpackage, “3D-Directional-SSV,”
makes necessary modifications for our specific context, while taking advantage of
recent developments in software routines. An impetus for this computational explo-
ration is in support of the theoretical work developed in Jammalamadaka and Terdik
[1]. Besides covering the entireGFB family of distributions, our work provides visu-
alization and simulation tools for new spherical distributions characterized by their
spherical harmonics as discussed there.

The potential research applications and uses of this software are many and yet to
be fully explored. Such visualization of spherical models and plotting of densities
and histograms is made possible on the surface of the unit sphere in high relief, as
opposed to the more typical heatmap representation. The topographical composition
of the plots (density, simulated data, and histogram) provides amuch clearer graphical
representation.

We note here that an earlier work by Gatto [5] discusses several generalizations
of the von Mises–Fisher distribution to higher dimensions including for dimension
greater than 3, while providing spherical plots for 3 dimensions. However visualiza-
tion and plotting of such models in more than 3 dimensions appear to be a difficult
task, except for some selected cross sections of such models, and will be looked into
elsewhere.

Sect. 2 provides a detailed account of the GFB family of distributions and their
interrelationships, along with a schematic diagram of these relationships between
GFB subfamilies. We then describe the background theory and connections between
the various subfamilies, as it will be needed for the simulations that come later.
Section3 describes how a histogram for a random sample of observations on the unit
sphere S2, may be plotted. Section4 includes various algorithms for the simulations
and visualization, along with some useful explanations.

Besides the MATLAB package 3D-Directional-SSV which is available at MAT-
LAB, File Exchange, and on GitHub, a supplement available by request from the
authors contains the MATLAB Scripts and descriptions of the various algorithms
used here.

2 GFB Family of Distributions and Their Interrelationships

Let
x̃ = x̃ (ϑ, ϕ) = (sin ϑ cosϕ, sin ϑ sin ϕ, cosϑ)� ,
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represent a point on the surface of the unit sphere S2 inR3, with colatitude ϑ ∈ [0, π ]
and longitude ϕ ∈ [0, 2π ]. We consider density functions f

(

x̃
)

on such an S2.
We shall use 2 alternate notations for a density viz. f

(

x̃
)

and f (ϑ, ϕ), the main
difference between them being that f

(

x̃
)

corresponds to the Lebesgue measure
Q

(

dx̃
) = sin ϑdϑdϕ, while f (ϑ, ϕ) includes sin ϑ in it, and corresponds to the

measure dϑdϕ on the set (ϑ, ϕ) ∈ [0, π ] × [0, 2π ]. For instance, if X is a random
unit vectorwhich is distributed uniformlyonS2 (see [6], Sect. 9.3.1), then theUniform
density f

(

x̃
) = 1/4π , x̃ ∈ S2 is constant, while the same uniform density becomes

f (ϑ, ϕ) = 1

4π
sin ϑ,

in terms of the coordinates (�,�), making� and� independent, with� distributed
as (sin ϑ) /2 on [0, π ] and � is uniform on [0, 2π).

An important consequence of this dual representation, in connection with the
simulationof randomvariates on theunit sphereS2 is the following.Onemay simulate
a random variate (�,�) according to the density f (ϑ, ϕ) and then use ˜X (�,�) =
(sin� cos�, sin� sin�, cos�)� to get a random point on S2, or simulate directly
a random variate ˜X ∈ S2 according to the density f

(

x̃
)

.
A distribution is considered uni-, bi-, and multimodal if it has one, two, or more

modes. In case there are two modes at the opposite ends; i.e., there is an axis joining
the two modes, we call this a bipolar distribution. If the mass is concentrated around
the main circle, it will be called a girdle distribution. Examples that follow, will
make these notions clear.

One of the earliest and commonly usedmodels for spherical data is the (unimodal)
vonMises–Fisher distribution [7] which can be extended to an antipodally symmetric
model; i.e., the density has same values antipodal points, as given by the Dimroth
[8] and Watson [9]. Such antipodally symmetric models were further generalized
by Bingham [10]. Such models belong to the exponential family, and we refer to
them as the “Generalized Fisher–Bingham Family” and label them the GFB family.
It has several subfamilies depending on the number of parameters. Figure1 provides
a schematic of the relationships between different members of the GFB family of
distributions. The GFB family of spherical distributions containing 8 parameters,
labeled GFB8, is given by the density (cf. [10]),

f8
(

x̃; μ̃
0
, κ, A

) ∼= exp
(

κμ̃
0
· x̃ + x̃�Ax̃

)

, (1)

where ∼= denotes equality up to a multiplicative constant and where μ̃
0

∈ S2, A
is a symmetric 3 × 3 matrix and μ̃

0
· x̃ denotes the usual inner product. Matrix A

has the form A = MZM�, where M =
[

μ̃
1
, μ̃

2
, μ̃

3

]

is an orthogonal matrix and

Z = diag (ζ1, ζ2, ζ3) is a diagonal matrix.
For an arbitrary constant ζ one can check that changing the matrix A to A1 =

MZ1M� in (1) with
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Fig. 1 Relationships between GFB family of distributions

Z1 = diag (ζ1 − ζ, ζ2 − ζ, ζ3 − ζ ) , (2)

the density (1) will remain the same. Therefore, in order to avoid identifiability
problems it is necessary to impose some constraints. Setting ζ = (ζ1 + ζ2 + ζ3) /3,
one usually assumes that

tr (A) = ζ1 + ζ2 + ζ3 = 0. (3)

Under this assumption, ζ3 = −ζ1 − ζ2, and Z is determined by the two parameters
ζ1 and ζ2.

The unique set of parameters of the density (1) has a cardinality of 8. These are

1. the parameter κ ,
2. two angles

(

ϑμ, ϕμ

)

, which define μ̃
0

= (

sin ϑμ cosϕμ, sin ϑμ sin ϕμ, cosϑμ

)�
,

3. two eigenvalues ζ1, ζ2, of A, and
4. threeEuler angleswhich define the orthogonalmatrixM , considered as a rotation

matrix.

Using the terminology as in [3], this is the GFB8 model and has the density (1)
of the form,

f8
(

x̃; μ̃
0
, κ, ζ1, ζ2, M

) ∼= exp

(

κμ̃
0
· x̃ +

3
∑

k=1

ζk

(

μ̃
k
· x̃

)2
)

.

If we set ζ = (ζ1 + ζ2) /2 in (2), an equivalent form of (1) can be obtained with
density given by

f8
(

x̃; κ, β, γ, μ̃
0
, M

) ∼= exp

(

κμ̃
0
· x̃ + γ

(

μ̃
3
· x̃

)2 + β

(

(

μ̃
1
· x̃

)2 −
(

μ̃
2
· x̃

)2
))

.

(4)
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In this paper, we shall consider densities in this particular form (4), wherein the
three parameters κ, β, and γ satisfy the following:

Condition The parameters of the density (4) satisfy: κ ∈ R, β ≥ 0, γ ∈ R. �

Remark 1 Notice that we are allowing for κ ∈ R; however a sign change of κ is
equivalent to changing either μ̃

0
to −μ̃

0
, or x̃ to −x̃ , since the quadratic form in the

density (4) is invariant under transformation x̃ to −x̃ . The sign change of κ will only
interchange the hemispheres, so that one may consider the absolute value |κ| as the
true parameter of concentration. If κ ≤ 0, then

f8
(

x̃; κ, β, γ, μ̃
0
, M

)

= f8
(

−x̃;−κ, β, γ, μ̃
0
, M

)

= f8
(

x̃;−κ, β, γ,−μ̃
0
, M

)

.

In terms of colatitude and longitude one can use the transformation ϑ → π − ϑ , and
ϕ → ϕ + π , for getting x̃ → −x̃ .

Although we discuss the most general GFB8 distribution here for completeness,
in practice we would be able to make use of convenient restrictions, as we do in
the next section, which will allow us to reduce the number of parameters, without
significant loss of generality or flexibility.

2.1 Model GFB6

We apply a restriction on the GFB8 by setting either μ̃
0

= μ̃
3
, or by assuming μ̃

0
is

collinear to μ̃
3
in the model (4). In this way, we can reduce the number of parameters

by two, i.e., by the two angles
(

ϑμ0 , ϕμ0

)

, which define μ̃
0
. The resulting GFB6

model has a density given by,

f6
(

x̃; κ, β, γ, M
) ∼= exp

(

κμ̃
3
· x̃ + γ

(

μ̃
3
· x̃

)2 + β

(

(

μ̃
1
· x̃

)2 −
(

μ̃
2
· x̃

)2
))

.

(5)
We can split up the rotation, which transforms the original xyz system into the

orthogonal system defined by M =
[

μ̃
1
, μ̃

2
, μ̃

3

]

, into two separate rotations. The

first rotation, Gμ̃
3
,˜N , will rotate the north pole ˜N = (0, 0, 1)� to μ̃

3
, i.e., Gμ̃

3
,˜N

˜N =
μ̃
3
. Such a rotation Gμ̃

3
,˜N can be constructed in the following way. The vectors ˜N

and μ̃
3
define a plane with normal vector ˜N× μ̃

3
(cross product). Now, let ˜N × μ̃

3
be the axis of rotation and rotate ˜N to μ̃

3
. This rotation depends solely on μ̃

3
, i.e.,

via the two angles ϑμ and ϕμ of μ̃
3
. When we rotate the sphere by Gμ̃

3
,˜N , the plane

of rotated x- and y-axes coincides with the plane defined by μ̃
1
and μ̃

2
, since μ̃

3
is

now perpendicular to both planes. Next, using μ̃
3
as the axis of rotation, we rotate
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the sphere by an angle ψ ∈ [0, 2π ] such that μ̃
1
coincides with the rotated x-axis,

and μ̃
2
coincides with the rotated y-axis. We will denote this rotation by Gμ̃

1,2
,xy .

These three angles ϑμ, ϕμ and ψ , called the Euler angles, characterize the rotation

from the original orthogonal system to the orthogonal system M =
[

μ̃
1
, μ̃

2
, μ̃

3

]

.

Note here that the rotations from one system to another are not unique and during
simulations we shall apply the above rotation for the densities, their simulations, and
histograms.

The six parameters of Model GFB6 are then κ, β, γ and M . If μ̃
3
is known we

can apply Gμ̃
3
,˜N and rotate it to the north pole ˜N and (5) will have the form

f6
(

x̃; κ, β, γ, ˜N , ψ
) ∼= exp

(

κ x̃3 + γ x̃23 + β

(

(

μ̃1
1
· x̃

)2 −
(

μ̃1
2
· x̃

)2
))

,

where again, x̃ = (̃x1, x̃2, x̃3), and μ̃1
k
are the transformed μ̃

k
, by Gμ̃

3
,˜N . Applying

Gμ̃
1,2

,xy , the density in the new coordinate system is

f6
(

x̃; κ, β, γ, ˜N , 0
) ∼= eκ x̃3+γ x̃23+β(x̃21−x̃22) = eκ cosϑ+γ cos2 ϑ+β sin2 ϑ cos 2ϕ.

For simplicity, if μ̃
3

= ˜N and ψ = 0, we may introduce the notation

f6
(

x̃; κ, β, γ
) = f6

(

x̃; κ, β, γ, ˜N , 0
)

,

and call it the canonical form.
The mean direction μ̃ of the model GFB6 given by (5), is characterized by a

constant times κM�
˜N , in particular if κ = 0, then μ̃ is undefined (μ̃ = 0, see [1] for

details).

Remark 2 The Model GFB6 is rotationally symmetric with respect to the axis ˜N if
and only if β = 0 ([1]). An example of rotational symmetry of GFB6, when β �= 0,
is given in Remark 5, where the axis of rotation is the y-axis.

From now on we consider densities in the canonical form and simulate ran-
dom variates when μ̃

3
= ˜N and ψ = 0. If we are given a matrix of rotation

M =
[

μ̃
1
, μ̃

2
, μ̃

3

]

, then we apply this rotation as the last step of the simulation.

As we have seen above, this rotation can be given by μ̃
3
and angle ψ , such that we

rotate ˜N to μ̃
3
, then use μ̃

3
as the axis of rotation and rotate the sphere by angle

ψ . This is the reverse rotation from what we described above. Formally, we apply
the product of the two rotations G

˜N ,μ̃
3
· Gxy,μ̃

1,2
, noting that the product of the two

rotations Gμ̃
3
,˜N · Gμ̃

1,2
,xy is again a rotation.

Considering the density by applying the transformation x = cosϑ , as is done in
[2],

x̃1 = √
1 − x2 cosϕ, x̃2 = √

1 − x2 sin ϕ, x̃3 = x, (6)
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with the derivative −dx = sin ϑdϑ , we obtain what we will hereafter refer to as the
basic form of the density f6, given by

g6 (x, ϕ; κ, β, γ ) ∼= eκx+γ x2+β(1−x2) cos 2ϕ

= eβ(1−x2) cos 2ϕeκx+γ x2 . (7)

This is the joint density in x and ϕ, and can be considered as the product of two
densities, where exp

(

κx + γ x2
)

is a density in x , and exp
(

β
(

1 − x2
)

cos 2ϕ
)

is the
conditional density of � given X . More precisely

g6 (x, ϕ; κ, β, γ ) = g�|X (ϕ|x;β) g6,X (x; κ, γ ) ,

where

g6,X (x; κ, β, γ ) ∼= exp
(

κx + γ x2
)

2π
∫

0

eβ(1−x2) cos 2ϕdϕ = I0
(

β
(

1 − x2
))

eκx+γ x2 .

It follows from (7) that

g�|X (ϕ|x;β) ∼= eβ(1−x2) cos 2ϕ. (8)

The densities g6,X (x; κ, β, γ ) and g�|X (ϕ|x;β) will be called themarginal density,
and the conditional density respectively. The conditional density g�|X remains the
same throughout this paper, and therefore we do not refer to the specific subfamily
to which it corresponds.

Remark 3 Given X = x , the conditional density (8) follows vMF distribution (see
Sect. 2.6) with parameter β

(

1 − x2
)

and is a function of 2ϕ. It is worth mentioning
that g�|X (ϕ|x;β) is not a vMF distribution on the unit sphere S2 since the factor
(sin 2ϕ) is missing from (8), but it is vMF distributed on the unit circle S1.

We now consider special cases of Model GFB6, when one of the basic param-
eters κ, β, γ is zero. Although the densities in these cases follow directly from the
densities f6 and g6, we list them individually in order of decreasing complexity. The
algorithms for the simulation of these models will be given in Sect. 4, in reverse
order, incrementally increasing the number of parameters and the model complexity.

2.2 Kent Model GFB5,K

Let γ = 0 in (5) so that the number of parameters in f6
(

x̃; κ, β, γ, M
)

is reduced
by one (i.e., by parameter γ ), and takes the form
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f5
(

x̃; κ, β, M
) ∼= exp

(

κμ̃
3
· x̃ + β

(

(

μ̃
1
· x̃

)2 −
(

μ̃
2
· x̃

)2
))

, (9)

which defines the five parameter model GFB5,K . The five parameters are κ, β, and
M , with the canonical form

f5
(

x̃; κ, β
) ∼= eκ x̃3+β(x̃21−x̃22).

In terms of ϑ and ϕ

f5
(

x̃; κ, β
) ∼= eκ cosϑ+β sin2 ϑ cos 2ϕ, (10)

(see [2]). If we apply transformation (6) then the corresponding basic form becomes

g5 (x, ϕ; κ, β) = g�|X (ϕ|x;β) g5,X (x; κ) ,

where
g5,X (x; κ, β) ∼= I0

(

β
(

1 − x2
))

eκx , (11)

with the conditional density g�|X givenby (8). Furthermore, if 2β ≤ κ the distribution
is unimodal with the mode at μ̃

3
, which is the case Kent originally considered in [3].

If 2β > κ the distribution is bimodal, with modes at longitude ϕ = 0 and π , with the
third coordinate, x̃3, defined by the equation cosϑ = κ/2β for both modes (Fig. 2).

Remark 4 AllMATLAB scripts described in this paper are contained in the package
3D-Directional-SSV.

When 2β ≤ κ , the parameters in this model have the meaning (see [3])

1. |κ| represents the concentration
2. μ̃

3
is the mean direction (pole or mode)

Fig. 2 Kent density, left: bimodal, 2β > κ , modes are at ϑ = π/4, and ϕ = 0, π ; right: unimodal,
2β ≤ κ
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3. μ̃
1
and μ̃

2
are, respectively, the major and minor axes of constant probability

ellipses near the mode, and are determined only up to sign.

2.2.1 Equal-Area Projection and Separability of FB6

Equal-area projection of spherical densities provides the possibility of showing the
simulations on a rectangle in the plane. As mentioned in [11], in the particular
case when 2β ≤ κ , modelGFB5,K represents Lambert’s equal-area projection of the
sphere

y1 = r cosϕ, y2 = r sin ϕ, r = sin (ϑ/2) , (12)

and separates the density (10) by coordinates y1 and y2. The inverse of this transform

cosϑ = 1 − 2
(

y21 + y22
)

,

sin ϕ = y22
√

y21 + y22

,

cosϕ = y21
√

y21 + y22

, (13)

will be useful during simulations.
As shown in the Lemma below, the transformed Kent model FB5,K can be written

f5 (y1, y2; κ, ζ1, ζ2) ∼= e−2(κ−2β)y21−4βy41 e−2(κ+2β)y22+4βy42 ,

making the transformed coordinates independent. We show that the converse of this
statement is also true.

Lemma 1 Consider the model FB6 with density given in the form

f6
(

x̃; κ, ζ1, ζ2
) ∼= exp

(

κ x̃3 +
3

∑

k=1

ζk x̃
2
k

)

. (14)

The equal-area projection f6 (y1, y2; κ, ζ1, ζ2) of (14) will be separable in y1 and y2
if only if f6 (y1, y2; κ, ζ1, ζ2) corresponds to the Kent model FB5,K .

Proof Let us start from the FB6 density

f6
(

x̃; κ, ζ1, ζ2
) ∼= exp

(

κ x̃3 +
3

∑

k=1

ζk x̃
2
k

)

.

Now, apply the equal-area projection (12). We have
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x̃3 = cosϑ = 1 − 2r2,

x̃21 = 4
(

1 − r2
)

y21 ,

x̃22 = 4
(

1 − r2
)

y22 ,

x̃23 = 1 − 4r2
(

1 − r2
)

so that

f6 (y1, y2; κ, ζ1, ζ2) ∼= exp
(−2κr2 + 4

(

1 − r2
) (

ζ1y
2
1 + ζ2y

2
2 − ζ3r

2
))

, (15)

where r2 = y21 + y22 . Now, the exponent in details writes

− 2κ
(

y21 + y22
) + 4ζ1y

2
1 + ζ2y

2
2 − ζ3

(

y21 + y22
)

− 4ζ1
(

y41 + y21 y
2
2

) − 4ζ2
(

y42 + y21 y
2
2

) + 4ζ3
(

y41 + 2y21 y
2
2 + y42

)

.

The density (15) will be separable in y1 and y2 iff

ζ1 + ζ2 − 2ζ3 = 0. (16)

The sum ζ1 + ζ2 − 2ζ3 is invariant under the transformation (2), therefore setting ζ =
(ζ1 + ζ2) /2 in (2), (16) implies and implied by γ = ζ3 − (ζ1 + ζ2) /2 = 0, resulting
in the Kent model FB5,K . �

2.3 Bingham Model GFB5,B

An alternate way to reduce the number of parameters by one in (5), is by setting
κ = 0. This yields the density, with the canonical form

fB
(

x̃;β, γ
) ∼= eγ x̃23+β(x̃21−x̃22) = eγ cos2 ϑ+β sin2 ϑ cos 2ϕ. (17)

Application of transformation (6) gives the basic form

gB (x, ϕ;β, γ ) = g�|X (ϕ|x;β) gB,X (x; γ ) ,

where
gB,X (x, β, γ ) ∼= I0

(

β
(

1 − x2
))

eγ x2 ,

see (8) for the conditional density g�|X , and recall the definition of the function I0

I0
(

β
(

1 − x2
)) =

2π
∫

0

eβ(1−x2) cos 2ϕdϕ.
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Fig. 3 Bingham model; β = 3.2, for all cases, γ = −1.1 < β, γ = 3.2 = β and γ = 4.1 > β

from left to right respectively, here μ̃ = (0, 0, 1)�, and ψ = 0

Here, themarginal density gB,X contains the expression exp
(

γ x2
)

which corresponds
to the DW distribution, defined in Eq. (19).

Remark 5 In the particular case when β = γ , the density (17) has the form

fB
(

x̃;β, γ
) ∼= eγ x̃23+β(x̃21−x̃22) ∼= e−2γ x̃22 . (18)

This model (18) is a rotation of the DWmodel (see Eq. (19)) with negative parameter
(we remind the reader that β > 0) and therefore (18) is a girdle distribution over the
main circle x̃2 = 0.

If we fix β and change γ , there are three possible alignments: when γ < β then
it is bipolar with modal direction toward the x-axis, when β = γ then it is girdle
distribution, and finally when β < γ then the modal direction becomes the north
pole ˜N . These are illustrated in Fig. 3.

2.4 Model GFB4,β

Wenow consider the simplest formwhen the conditional density g�|X is not constant,
namelywhen the� and� are not independent randomvariables. Setting either κ = 0
and γ = 0 in (5), or κ = 0 in (9), or γ = 0 in (17), we get the density function which
is a four-parameter family of distributions with canonical form

fβ
(

x̃;β
) ∼= eβ(x̃21−x̃22) = eβ sin2 ϑ cos 2ϕ.

The basic form
gβ (x, ϕ;β) ∼= eβ(1−x2) cos 2ϕ

coincides formally with the conditional density g�|X . Nevertheless, the marginal
density is not uniform since

gβ (x, ϕ;β) = g�|X (ϕ|x;β) gβ,X (x, β)
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where
gβ,X (x, β) ∼= I0

(

β
(

1 − x2
))

,

and g�|X follows a vMF distribution on the circle as we have already mentioned (see
(8)).

2.5 Model GFB4

Setting β = 0, in (5) we reduce the number of parameters by two (β, and angle ψ)
resulting in the canonical form

f4
(

x̃; κ, γ
) ∼= eκ x̃3+γ x̃23 = eκ cosϑ+γ cos2 ϑ .

This density does not depend on longitude ϕ. Instead, it depends only on cosϑ and
hence, is rotationally symmetric (see Lemma 4 in [1]). Note that this model as well as
(19) below are indeed generalized von Mises ones (for which simulation algorithms
are well-studied) since cos2(x) = (1 + cos(2x))/2.

Transformation (6) provides the basic form

g4 (x; κ, γ ) ∼= eκx+γ x2 .

A particular case of Model GFB4 when κ = 0, is the following three-parameter
family:

2.6 Dimroth-Watson Model GFB3,DW

The Dimroth-Watson Distribution (DW) [12] distribution is given by the density
function

fW
(

x̃; γ, μ̃
)

= 1

M (1/2, 3/2, γ )
eγ (μ̃·̃x)2 = 1

M (1/2, 3/2, γ )
eγ cos2 ϑ , (19)

whereM (1/2, 3/2, γ ) is Kummer’s function (not to be confusedwith the orthogonal

matrix M described above) and where ϑ = arccos
(

μ̃ · x̃
)

, (see [1]). Either setting

γ = 0, in Model GFB4, or β = 0 in the Kent Model GFB5,K , we arrive at the most
basic model on the sphere viz. the von Mises–Fisher distribution.
Model GFB3,vMF

The widely used von Mises–Fisher Model (vMF) density is given by
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fvMF

(

x̃; κ, μ̃
)

=
√

κ

(2π)3/2 I1/2 (κ)
eκμ̃·̃x , (20)

with basic form

gvMF (x; κ) =
√

κ

(2π)3/2 I1/2 (κ)
eκx .

3 A Spherical Histogram

A histogram for a random sample on the unit sphere S2 usually assumes an equal-
area discretization of the sphere. We now discuss an alternative, viz. the HEALPix
(Hierarchical, Equal Area and isoLatitude Pixelization) discretization, a detailed
description of which can be found in [13]. In the first step of the pixelization the
sphere is partitioned into 12 equal-area spherical quadrilaterals (pixels), and in each
subsequent step, all the existing pixels are divided into 4 equal-area quadrilaterals.
HEALPix is a discretization with the resolution parameter nside (number of steps of
division, which is a power of 2) and total number of pixels equal to npix := 12n2side
such that

∑npix
k=1 nk = n, and each with an area of 4π/npix.

If we are given a random sample ˜X j , j = 1, 2, . . . n, on the sphere S2, then for
each pixel/ quadrilateral �k, k = 1, 2, . . . npix we set an integer nk which counts
the number of the sample elements contained in the pixel �k . We use the nested
numbering scheme for ordering pixels, where �k is the kth pixel according to this
scheme. The nested scheme is appropriate for decreasing the resolution, since one
can easily accumulate the samples included in 4 “neighboring" pixels.

We define the histogram H
(

x̃
)

such that it is constant over a quadrilateral�k and
the integral over the sphere is 1:

H
(

x̃
) = npixnk

4πn
, x̃ ∈ �k .

Weplot the histogramdrawing a columnwith height npixnk/4πn over each quadri-
lateral. For instance, let ˜X j , j = 1, 2, . . . n = 212, be a random sample from the
uniform distribution and nside = 23, so that npix = 768. We plot the sample and the
corresponding histogram in Fig. 4.

An important feature of this histogram lies in the plot construction. Mathemat-
ically, when the columns from each quadrilateral are extruded from the surface of
the sphere, the height is measured normal to the center of the pixel, and the vol-
ume is given as the height times the area of the quadrilateral as described above, as
expected. However, graphically we also extrude all of the pixel edges normal to their
respective location on the sphere. This results in taller columns having larger patches
and shorter columns having smaller patches at their respective termini, and stands
that maintain pixel surface area at all elevations, which forces adjacent columns



132 S. R. Jammalamadaka and G. Terdik

Fig. 4 Uniform sample and its histogram

to become increasingly separated as column height increases, and results in a pin
cushion type histogram.

4 Simulation of Random Variates on the Sphere

All the simulations described here will have some common features and these are
the following:

1. We start with the case κ ≥ 0 in formulae, but also allow for the case κ ≤ 0
during simulation. We simulate a random variate ˜X with |κ| and as a final step
(but before rotation) change the variate ˜X to −˜X (see Remark 1).

2. All algorithms below concern the case when the frame of reference is xyz, with
the modal/mean direction as the north pole, i.e., μ̃ = ˜N .

3. The plots are generated by the following parameters: Sample size is n = 212 =
8192, resolution of the discretized sphere S2 is nside = 23, which yields a total
pixel count of npix = 768. The resolution for theoretical density plots is 101 ×
101 of the set of angles (ϑ, ϕ) ∈ [0, π ] × [0, 2π ].

4. We characterize a rotation corresponding to M =
[

μ̃
1
, μ̃

2
, μ̃

3

]

by a vector μ̃

and an angle ψ , such that μ̃
3
represents μ̃, and μ̃

1
, μ̃

2
define the angle ψ , see

Sect. 2.1 for details. When an angle of a random variate is changed by ψ , then
the corresponding density is changes by −ψ .
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4.1 Acceptance-Rejection Method

For the simulation of random variates from various distributions discussed here,
we make frequent use of the standard acceptance-rejection method. For a detailed
account of this classic simulation technique see, e.g., [14] and [15], but a general
overview of this method for any particular distribution is as follows.

We wish to sample random variate X from a target distribution with density
fX (x) (given up to a constant multiplier) which can be evaluated for any x , for which
the simulation process is either exceptionally difficult, or perhaps even unknown.
Because fX (x) can be computed, we can write the density fX (x) = cg (x) h (x),
where the constant c ≥ 1, 0 < g (x) ≤ 1, and h (x) is a probability density function
from which we know how to sample.

The algorithm is based on checking the inequalityU ≤ g (Y ), whereU is uniform
on the interval (0, 1), and if it is satisfied, then Y will be accepted as a random variate
from fX (x).

In practice, we seek a density h (x) such that

fX (x) ≤ c1h (x) ,

where c1 ≥ 1, then set g (x) = fX (x) /c1h (x) and call the denominator as the enve-
lope. To maximize algorithmic efficiency, the acceptance ratio 1/c1 should be maxi-
mized such that the constant c1 is as close to one as possible, which naturally depends
on the choice of density h (x).

If ˜fX coincides with fX except some constant c f , fX ∼= ˜fX , and similarly ˜h
coincides with h except some constant ch , hX

∼= ˜hX , and ˜fX ≤ ˜h, then

c f ˜fX (x) = fX (x) ≤ c f˜h (x) = c f

ch
ch˜h (x) = c1h (x) ,

where 1/c1 = ch/c f is the acceptance ratio. Therefore the test can be performed by
checking the inequality

U ≤ g (Y ) = fX (Y )

c1h (Y )
= ˜fX (Y )

˜h (Y )
, (21)

where again Y andU are distributed by h (y) and uniform respectively. This method
has been used extensively by Wood [2, 16]. In particular Ulrich [17] discusses a
general method for simulating a rotationally symmetric variable. We employ this
technique in different contexts.
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4.2 Simulation of FB Families

We shall describe the simulation of the canonical variates. The necessary rotation
can be done separately in each case and is included in the appropriate scripts of the
MATLAB package 3D-Directional-SSV.

We shall use the well-known basic algorithms for simulation of spherical uniform,
vMF and DW random variates (Suppl., Alg. 3–6).

The inequality (21) shows that for the simulation we do not need the normalizing
constants, although they are needed for calculating the acceptance ratios. If these
constants are not available analytically, we use numerical integration for calculating
the acceptance ratios.

4.2.1 Model GFB4

GFB4 generalizes both the vMF and DWmodels. We use the envelopes proposed by
Wood [2] in the application of acceptance-rejection sampling as described above.

The density in basic form

g4 (x; κ, γ ) ∼= eκx+γ x2 ,

implies that the longitude� = 2πU , whereU is uniformly distributed independently
of the colatitude �, and hence we concentrate on simulating X = cos�. Also, we
assume that the parameters κ and γ are not identically zero, because otherwise the
model is simplified to either the vMF or DW. We consider three cases depending on
the relation between the parameters κ and γ .

1. If γ < 0, 0 ≤ κ ≤ −2γ , complete the quadratic form in the exponent and rewrite
g4 as

g4 (x; κ, γ ) ∼= eγ (x+κ/2γ )2 , x ∈ [−1, 1] ,

and use the Gaussian envelope. The acceptance ratio is large if we assume that
the mean −κ/2γ belongs to the interval [−1, 1], which is the case under this
assumption.

2. If γ < 0, κ ≥ −2γ , then we use vMF gvMF (x, κ + 2γ ) on S2, as an envelope.
3. If γ > 0, an envelope composed of a mixture of gvMF (x, κ + γ ) and

gvMF (x, κ − γ ) vMF distributions is used.

The difference between our method and the one described in [2], is how we
partition the case where γ < 0.1

Some particular cases with interesting features arise in the simulation ofmodels in
theGFB5 family. In this vein, we considerGFB4,β , which demonstrates the difficulty

1 Note: In [2], the Procedure for FB−
4 on p.890 has a misprint. The correct expressions should be

μ1 = (2γ − κ)/
√−2γ , μ2 = −(2γ + κ)/

√−2γ .
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of combining two algorithms, as well as the problem of simulation of � according
to the conditional density g�|X .

4.2.2 Model GFB4,β

If β �= 0, γ = 0, κ = 0, the density in basic form is given by

gβ (x, ϕ; κ, β) ∼= eβ(1−x2) cos 2ϕ,

and has marginal
gβ,X (x, β) ∼= I0

(

β
(

1 − x2
))

,

and conditional g�|X , see (8), densities.
The simulation of the marginal X is based on the inequality

1

cI
I0

(

β
(

1 − x2
)) ≤ c

2cI
(p1 fW (x;−β) + p2 fW (x;β))

where

cI =
1

∫

−1

I0
(

β
(

1 − x2
))

dx .

With the mixture of two DW densities, one is bipolar when the parameter β in fW is
positive and the other one is a girdle distribution.

Now, we use the acceptance-rejection method for the simulation of X = cos�,
with an acceptance ratio of 2cI /c that is decreasing as β is increasing (see Fig. 5).

The simulation of longitude � according to the conditional density g�|X is given
by simulating 2� as a vMF distributed random variate on S1 (see Remark 3). It
yields a value in [0, π ], and hence, � itself will be an element in [0, π/2]. The
density function gβ has the same value at �, −�, � + π , and −� + π , therefore
we shall extend the simulated value randomly.

Fig. 5 Model GFB4,β
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4.2.3 Model GFB5,K

Here we consider the Kent model GFB5,K , and note that the equal-area projection
simplifies the problem to one of simulating two independent random variates.2

Equal-area projection, case 2β ≤ κ

This part of the simulation of the Kent model GFB5,K

f5
(

x̃; κ, β
) ∼= eκ x̃3+β(x̃21−x̃22),

has been considered by Kent [11] under the assumption,

0 ≤ 2β ≤ κ. (22)

This is the case when the exponent of the density is a nonincreasing function of ϑ

for each ϕ, and when the model is unimodal (see Fig. 6). The Kent model, GFB5,K ,
under transformation (12) has the form

f5 (y1, y2; κ, β) ∼= e−2(κ−2β)y21−4βy41 e−2(κ+2β)y22+4βy42 ,

which is a product of two densities. Introduce

α1 = κ − 2β, α2 = κ + 2β,

in this parametrization the density has the form

f5 (y1, y2; κ, β) ∼= e−2α1 y21−4βy41 e−2α2 y22+4βy42 . (23)

If assumption (22) holds then

α1 ≥ 0, α2 ≥ 0,

and we use Kent’s algorithm [11].

Fig. 6 Model GFB5,K , unimodal: 2β ≤ κ , from left to right: density, sample, histogram

2 See Sect. 2.2.1 for details.
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We simplify Kent’s algorithm, using a Gaussian envelope instead of the expo-
nential envelope. From Kent’s method, we stop at the first inequality and apply the
acceptance-rejection method right there. The basic inequality is given by,

−1

2
δ2w2 ≤ 1

2
τ 2 − δτ |w| , δ, τ > 0.

Setting δ = √
8β, and τ = 1, we have

exp
(−2α1y

2
1 − 4βy41

) ≤ exp

(

1

2
− 1

2

(

4α1 + √

8β
)

y21

)

,

which gives the Gaussian envelop with variance σ 2
1 = 1/

(

4α1 + √
8β

)

. Similarly

exp
(−2α2y

2
2 + 4βy42

) ≤ exp

(

−1

2
(4α2 − 8β) y22

)

,

yields a Gaussian envelop as well, with variance σ 2
2 = 1/4κ .3 We combine these

two and use acceptance-rejection method.
Equal-area projection, case 2β > κ

We are also interested in the case when the density increasing and decreasing in
ϑ around ϕ = 0.

0 ≤ κ ≤ 2β,

In this case,

α1 = κ − 2β ≤ 0,

α2 = κ + 2β ≥ 0.

Let us start with the first component of (23), exp
(−2α1y21 − 4βy41

)

. The polynomial

p (y1) = −α1y
2
1 − 2βy41 ,

in the exponent is symmetric to zero. We restrict the variable y1 such that |y1| ≤ 1,
hence we have two maximums at y0 = ±√

(1 − κ/2β) /2, where

p (y0) = β

2

(

1 − κ

2β

)2

.

Therefore we separate the interval [−1, 1] and use Gaussian envelope

exp
(−2α1y

2
1 − 4βy41

) ≤ exp

(

−2

(

β

2

(

1 − κ

2β

)

(

y1 − y+
0

)2 + p (y0)

))

, (24)

3 Our algorithm corrects an error in [11].
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on [0, 1]. This envelope will exactly match the target density at the maximum; oth-
erwise it is greater.

Similarly

exp
(−2α2y

2
2 + 4βy42

) ≤ exp
(− (2α2 − 4β) y22

) = exp
(−2κy22

)

, (25)

provide a Gaussian envelop as well, with variance σ 2
2 = 1/4κ .

If 2β > κ , then the model is bimodal, but not bipolar, and the cosine of the angle,
η, between the modal directions is cos η = κ/2β. We put κ/2β = 1/2, and hence
η = π/3 (see Fig. 7).

4.2.4 Model GFB6

The Kent model GFB5,K and the Bingham Model GFB5,B are included here since,
as we shall see, there is only a small difference whether κ = 0, or γ = 0. If κ = 0,
we pay particular attention to the case γ = β �= 0, (see Remark 5).

We repeat the method applied for the FBβ , β �= 0, with κ and γ , then we use a
mixture of two FB4 densities (Fig. 8).

Fig. 7 If 2β > κ , then the model GFB5,K , is bimodal

Fig. 8 Model GFB6, κ = 1.5; β = 0.61; γ = 0.31; μ = [1,−1, 1], ψ = 0
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4.3 Simulating Spherical Distributions Resulting
from Spherical Harmonics

As discussed in [1], if a density f
(

x̃
)

is continuous then it has a series expansion in
terms of the spherical harmonics Ym

� ,

f
(

x̃
) =

∞
∑

�=0

�
∑

m=−�

am� Y
m
�

(

x̃
)

. (26)

The coefficients
{

am�
}

may be considered as analogous to the characteristic function,
they are complex valued with am∗

� = (−1)m a−m
� , and are given by

am� =
∫

S2

f
(

x̃
)

Ym∗
�

(

x̃
)

Q
(

dx̃
)

. (27)

The notation ∗ is defined as the transpose and conjugate of a matrix and just the
conjugate for a scalar. Several symmetries of distributions are characterized in terms
of the coefficients am� given in (27).

For a detailed account of Spherical Distributions and Harmonic Analysis the
reader is referred to [1], where the first few spherical harmonics are listed. Notice in
particular, that the spherical harmonic Y 0

0 = 1/
√
4π , and hence a00 = 1/

√
4π is the

normalizing constant for f
(

x̃
)

and Q
(

dx̃
) = sin ϑdϑdϕ is the Lebesgue element

of surface area on S2.
Let x̃ (ϑ, ϕ) be a point on the unit sphere S2, then the spherical harmonics are

defined by

Ym
� (ϑ, ϕ) = (−1)m

√

2� + 1

4π

(� − m)!
(� + m)! P

m
� (cosϑ) eimϕ, ϕ ∈ [0, 2π ] , ϑ ∈ [0, π ] ,

where Pm
� denotes associated normalized Legendre function of the first kind.

Real-valued spherical harmonics. Spherical harmonics are, in general, complex
valued, due to the dependence of longitude ϕ given by eimϕ . Now, eimϕ is a complete
orthogonal system on the circle which is equivalent to the sine-cosine system for real-
valued functions. Similarly, real-valued spherical harmonic functions are defined as

Y�,m =

⎧

⎪

⎨

⎪

⎩

1√
2

(

Ym
� + (−1)m Y−m

�

)

m > 0
Ym

� m = 0
1

i
√
2

(

Y−m
� − (−1)m Ym

�

)

m < 0
(28)

The harmonics of orderm > 0 are said to be of the cosine type, and those withm < 0
of the sine type (Fig. 9).
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Fig. 9 Square of real spherical harmonics Y 2
4,m with L = 4, m = 1, 2, 3

Onemay plot densities according tomodulus square of complex and real spherical
harmonics for any given L and all m ∈ [−L , L] by the command
dx =Density_SphHarm_All(L , m, real, resolution); if m /∈ [−L , L] then all Y 2

L ,m
will be plotted, see our MATLAB package 3D-Directional-SSV for details.

Example 1 Exponential family class of distributions [12],

g
(

x̃
) = exp

M
∑

�=0

�
∑

m=−�

bm� Y
m
�

(

x̃
)

,

where bm∗
� = (−1)m b−m

� . The normalizing constant corresponds to b00 and depends
on the rest of the bm� parameters, such that the integral is necessarily 1. The likelihood
of observations often has this form. In the case of rotational symmetry around axis
x̃0

fe
(

x̃
) = exp

(

M
∑

�=0

b�P� (cosϑ)

)

where ϑ is the angle between x̃ and x̃0, and P� denotes the Standardized Legendre
polynomial (P0 (x) = 1).

Example 2 Another useful class of density functions is given by,

f
(

x̃
) =

∣

∣

∣

∣

∣

∞
∑

�=0

�
∑

m=−�

dm� Y
m
�

(

x̃
)

∣

∣

∣

∣

∣

2

,

where
∑∞

�=0

∑�
m=−�

∣

∣dm�
∣

∣

2 = 1. This class of distributions are of interest in, among
other topics, the modeling of atoms.

In quantum mechanics, Y�,m
(

x̃
)2

is considered as a probability density function,
and plays an important role in the modeling of the hydrogen atom. The module
square

∣

∣Ym
�

(

x̃
)∣

∣

2
is also a density function that serves as an example of a rotational

symmetric density function on the sphere, as it only depends on cosϑ .
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4.3.1 Simulation of Modulus-Square of Complex Harmonics

Consider the density
∣

∣Ym
�

(

x̃
)∣

∣

2
on S2 with respect to Lebesgue measure sin ϑdϑdϕ.

We have
∣

∣Ym
�

(

x̃
)∣

∣

2 = 2� + 1

4π

(� − m)!
(� + m)! P

m
� (cosϑ)2 ,

where Pm
� is associated normalized Legendre function of the first kind.

∣

∣Ym
�

(

x̃
)∣

∣

2
is rotational symmetric and 2π

∣

∣Ym
�

∣

∣

2
will be a density on [−1, 1].More

precisely, the function
f m� (x) = cm� Pm

� (x)2 ,

where

cm� = 2� + 1

2

(� − m)!
(� + m)! ,

is a density on [−1, 1]. We have
∣

∣Ym
�

(

x̃
)∣

∣

2 = f m� (cosϑ)2 /2π . For convenience
(MATLAB) we use the fully normalized associated Legendre function pm� , such that
f m� (x) = pm� (x)2.
For general � andm and pm� (x)2, one can use Forsyth’smethod [18], with intervals

defined by the zeros of pm� (x)2 and Beta envelopes, say. In particular, let � = 3,
m = 2. then p23 (x)2 has a root at 0 and is symmetric around zero. For generating
X , we apply the Neumann Theorem for 2 f 23 (x), since the Beta distribution with
shape parameters α = 3.08 and β = 2.5249, proved to be an efficient envelope for
the density 2 f 23 (x).

The beta density is given by the function b (x, α, β) = xα−1 (1 − x)β−1 /B (α, β),
and the above shape parameters (α = 3.08 and β = 2.5249) were found with the
following steps:

1. let α, β > 1,
2. use the relation (α − 1) / (α + β − 2) = xM , between α and β, where xM is the

maximum point (modus) of 2 f 23 (x),
3. find the set of α and β under the (simultaneous) constraints:

(i) max
x

(

2 f 23 (x) /b (x, α, β)
) ≥ 1

(ii) max
α

(

min
x

(

2 f 23 (x) /cb (x, α, β)
)

)

≤ 1

4. choose a pair α and β, such that min
α

(

max
x

(

2 f 23 (x) /b (x, α, β)
)

)

is achieved.

We then have,

2 f 23 (x) = 2 f 23 (x)

b (x, α, β)
b (x, α, β)

= cg23 (x) h23 (x) ,
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with c = max
(

2 f 23 (x) /b (x, α, β)
)

, h23 (x) = b (x, α, β), and0 ≤ g23 (x) = 2 f 23 (x) /

(cb (x, α, β)) ≤ 1. We have found that c = 1.074, showing a high acceptance ratio.

4.3.2 Simulation of Real Harmonics Y 2
3,2

Consider the real spherical harmonic Y3,2 given in (28). The density function Y 2
3,2 is

given by

Y 2
3,2 = 1

2

(

Y 2
3 + Y−2

3

)2 = 1

2

7

4π

1

5! P
2
3 (cosϑ)2

(

ei2ϕ + e−i2ϕ)2

= 2

√

7

4π

1

5! P
2
3 (cosϑ)2 cos2 2ϕ.

This is a multimodal, non-rotationally symmetric distribution. The density function
Y 2
3,2 is the multiplication of the density of� and the density of� respectively, which

implies that the angles � and � are changing independently. The simulation of �

according to the density ∼= P2
3 (cosϑ)2 sin ϑ , has been solved during the simulation

of module square of complex harmonics above (Fig. 10).
The simulation of � by the density ∼= cos2 ϕ is based on the following:

Let B beBeta distributedwithα = 3/2 andβ = 1/2, anddefine X = arccos
(√

B
)

.

Then, from the equality

FX (x) = P
(

arccos
(√

B
)

≤ x
)

= P
(

B > cos2 x
)

,

it follows 0

fX (x) = 2 fB
(

cos2 x
)

cos x sin x

= 2

b (α, β)

(

cos2 x
)1/2 (

sin2 x
)−1/2

cos x sin x = 4 cos2 x

π
(29)

Similarly, if B is a Beta distributed variate with α = 1/2 and β = 3/2,

Fig. 10 Simulation of density
∣

∣Ym
�

(

x̃
)∣

∣

2
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fX (x) = 2 fB
(

cos2 x
)

cos x sin x

= 2

b (α, β)

(

cos2 x
)−1/2 (

sin2 x
)3/2

cos x sin x = 4 sin2 x

π
.

The latter of the two formulations for fX (x) is used for the simulation of Y 2
3,−2.

We conclude that the density of� = arccos
(√

B
)

is∼= cos2 ϕ, on [−π/2, π/2].

Once we have a random variate on [−π/2, π/2] with density function depending on
cosϕ we can easily transform its values periodically to the interval [0, 2mπ ], say.
This works for the density

f
(

x̃
) ∼= P2

3 (cosϑ)2 cos2 2ϕ,

in this case we choose m = 2, since the longitude ϕ should have values on [0, 2π ],
and we have the random variate 2� on [−π/2, π/2]. One can generalize this method
for density ∼= cos2 kϕ, where k is any integer (Fig. 11).

4.4 Simulation of a U-Distribution

Finally, we describe what we call the “U−distribution” (not to be confused with the
uniform distribution), which provides a unique and interesting example of a spherical
distribution that is antipodal, but not isotropic or rotationally symmetric.

Consider U1, U2, U3 that are independent uniform variables on [0, 1). Then we

define ˜Z = [Z1, Z2, Z3] = (U1,U2,U3)
� /

√

U 2
1 +U 2

2 +U 2
3 , ˜Z ∈ S2, and write

˜Z = (sin� cos�, sin� sin�, cos�) .

We then have (Fig. 12)

Fig. 11 Simulation of density Y 2
3,2
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Fig. 12 The U -distribution

tan (�) = Z2

Z1
= U2

U1

P (� < ϕ) = P

(

U2

U1
< tan (ϕ)

)

=

⎧

⎪

⎨

⎪

⎩

tan (ϕ)

2
if 0 ≤ ϕ < π/4

1 − 1

2 tan (ϕ)
if π/4 ≤ ϕ < π/2

,

and see mathematically that it is not the uniform density function

f� (ϕ) =

⎧

⎪

⎨

⎪

⎩

1

2 cos2 (ϕ)
if 0 ≤ ϕ < π/4

1

2 sin2 (ϕ)
if π/4 ≤ ϕ < π/2,

Now, consider the conditional density f�|� (ϑ |ϕ) for a fixed � = ϕ,

tan (�) cos (�) = Z1

Z3
= U1

U3
;

P (� < ϑ |� = ϕ) = P

(

U1

U3
< cos (ϕ) tan (ϑ)

)

=

⎧

⎪

⎨

⎪

⎩

cos (ϕ) tan (ϑ)

2
if ϕ ∈ [0, π/4] , ϑ ∈ [0, π/2] , cos (ϕ) tan (ϑ) ≤ 1

1 − 1

2 cos (ϕ) tan (ϑ)
if ϕ ∈ [0, π/4] , ϑ ∈ [0, π/2] , cos (ϕ) tan (ϑ) > 1

,
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f�|� (ϑ |ϕ) f� (ϕ)

=

⎧

⎪

⎨

⎪

⎩

cos (ϕ)

16 cos2 (ϑ) cos2 (ϕ)
if ϕ ∈ [0, π/4] , ϑ ∈ [0, π/2] , cos (ϕ) tan (ϑ) ≤ 1

1

16 sin2 (ϑ) cos3 (ϕ)
if ϕ ∈ [0, π/4] , ϑ ∈ [0, π/2] , cos (ϕ) tan (ϑ) > 1

.
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